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A B S T R A C T

We study the problem of capacity modification in many-to-one stable matching prob-
lems, where one side consists of workers and the other side consists of firms with ca-
pacity constraints. First, we study how the set of stable matchings changes when some
seats are assigned to the firms. We examine whether firms and workers can improve
or worsen upon changing the capacities under worker-proposing and firm-proposing
deferred acceptable algorithms.

Second, we study how to optimally increase the capacities of the firms so as to
obtain a stable and perfect matching. We consider two common optimality criteria,
one aiming to minimize the sum of capacity increase of all schools (abbrv. as MinSum)
and the other aiming to minimize the maximum capacity increase of any school (abbrv.
as MinMax). We obtain a complete picture in terms of computational complexity and
further investigate the parameterized complexity and approximability.

Finally, we finish by answering some questions that emerged while reviewing the
first two parts. We consider scenarios with bound on capacity increase scale, varying
costs for firms to increase capacity, and targeting only selected (of initially unmatched)
workers to match.
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1
I N T R O D U C T I O N

Many-to-one matching with two-sided preferences has various real-world applications
such as school choice. i. e. placement of students to schools, college and university ad-
mission, hospital/residents programs, refugee resettlement or fair allocation in health-
care. In these scenarios, we are usually given two disjoint set of agents, W and F, such
that each agent has a preference list over some members of the other set, and each
agent in F has a capacity constraint that limits the maximum number of agents on the
other side it can be feasibly matched with. The goal is to find a good matching (or
assignment) between W and F without violating the capacity constraints. To unify the
terminology, we consider the worker-firm allotment problem, and call the agents in W
the workers and the agents in F the firms.

As to what defines a good matching, the answer varies from application to applica-
tion. The simplest concept being that of a perfect matching, which ensures that every
worker is matched, achieving which can be crucial. The arguably most prominent and
well-known concept however is that of stable [GS62; GI89] matching, which ensures
that no two agents form a blocking pair, i. e. they do not prefer to be matched with
each other over their assigned partners. Stability is a key desideratum and has been a
standard criterion for many matching applications. Remarkably, for any given capaci-
ties, a stable matching of workers and firms always exists and can be computed using
the celebrated deferred-acceptance or Gale-Shapley algorithm [GS62; Rot84].

While the stable matching problem assumes fixed capacities, it is common to have
flexible capacities in practice, particularly in settings with variable demand or popu-
larity such as in vaccine distribution or course allocation. Flexibility refers to allowing
the addition or removal of seats to firms that are either undersubscribed or oversub-
scribed, respectively. We will use the term capacity modification to refer to change in the
capacities of the firms by a central planner. The theoretical study of capacity modifi-
cation was initiated by Sönmez [Sön97], who showed that under any stable matching
algorithm, there exists a scenario where some firm is better off when its capacity is
reduced.

Our focus of study will be the impact of capacity modification on the set of stable
matchings. Next, we will study how capacity modification be done optimally to obtain
stable and perfect matchings. Finally, we will study three other scenarios, with new
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1.1 thesis outline 2

parameters and constraints, and see how our initial approaches can be extended to
solve the new problems.

1.1 thesis outline

The remainder of this thesis is organized as follows

Chapter 2 provides the preliminary background, definitions and fundamentals (like
Gale-Shapley Algorithm and Rural Hospital’s Theorem) for stable and many-to-
one matching problems.

Chapter 3 reviews Gokhale et al.’s [Gok+24] work, focusing on the impact of capacity
modification. We study how the set of stable matchings respond to it.

Chapter 4 reviews Chen and Csáji’s [CC24] work, focusing on the optimal capac-
ity modification needed to obtain a stable and perfect matching. We study the
computational complexity, parameterized complexity and approximability of the
problem.

Chapter 5 answers the questions that arose while reviewing the last two chapters. We
study scenarios with bound on capacity increase scale, varying costs for firms to
increase capacity, and targeting only selected (of initially unmatched) workers
to match.
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P R E L I M I N A R I E S

For any positive integer r ∈ N, let [r] := {1, 2, ..., r}. Given two integer vectors of x, y
of dimention t, i. e. x, y ∈ Zt:

• we write x ≤ y iff x[i] ≤ y[i] for all i ∈ [t]

• x + y denotes the addition vector z, i. e. z[i] = x[i] + y[i] for all i ∈ [t]

• x⊙ y denotes the element-wise product vector z, i. e. z[i] = x[i] · y[i] for all i ∈ [t]

• ⌊x⌋ denotes the element-wise floor vector, i. e. ⌊x⌋[i] = ⌊x[i]⌋ for all i ∈ [t]

• |x|1 denotes the L1 norm of x, i. e. |x|1 = ∑
i∈[t]

x[i]

• |x|∞ denotes the L∞ norm of x, i. e. |x|∞ = max
i∈[t]

x[i]

A preference list (or priority order) ≻ over a set A is a linear order over A. We say that
a is preferred to b if a ≻ b.

2.1 many-to-one matching problem

The Many-To-One Matching (MM) problem has as input:

▶ A set W = {w1, w2, ..., wn} of n ∈ N workers

▶ A set F = { f1, f2, ..., fm} of m ∈ N firms

▶ For each worker w ∈ W, a preference list ≻w over a subset of firms

▶ For each firm f ∈ F, a priority order ≻ f over a subset of workers

▶ A capacity vector q ∈ Nm which specifies the maximum number of workers
allowed to be assigned to each firm

Thus an instance of the many-to-one matching problem is given by a tuple
⟨W, F,≻, q⟩, where ≻= (≻x)x∈W∪F. When all firms have unit capacities, i. e. q = 1m,
the problem becomes a one-to-one matching problem. In that case, we will follow the
man-woman terminology, and denote a problem instance by ⟨P, Q,≻⟩ where P and Q
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2.2 responsive preferences 4

denote the set of n men and m women respectively, and ≻ denotes the corresponding
preferences.

Throughtout, we will use the term agent to refer to a worker or a firm, i. e. an element
in the set W ∪ F. For each worker x ∈ W (resp. firm x ∈ F), let A(x) denote the set of
firm acceptable to worker x (resp. all workers in firm x’s priority order). We assume
no worker (resp. no firm) has an empty preference list (resp. priority order), since
such agents can be ignored or removed from the problem instance without any effect.
Note that we also assume that a worker w is acceptable to a firm f iff f is acceptable
to w, otherwise such acceptances can be removed similarly. We can also model the
acceptability relations with a bipartite graph G = ⟨W, F; E⟩, where E is the set of all
pairs (w, f ) such that w and f find each other acceptable.

2.2 responsive preferences

The extension of a firm f ’s preference ≻ f over subsets of workers is said to be respon-
sive if for any subset S ⊆ A( f ) of workers:

• for all w ∈ A( f ) \ S, S ∪ {w} ≻ f S

• for all w, w′ ∈ A( f ) \ S, S ∪ {w} ≻ f S ∪ {w′} iff w ≻ f w′

• ≻ f is transitive

Thus, ≻ f induces a partial order over the set of all subsets of acceptable workers.
Throughout, we will assume that all firms have responsive preferences over subsets of
workers. We will also define two subdomains of responsive preferences that are of
interest to us:

Strongly Monotone A firm f has strongly monotone preferences if it prefers cardinality-
wise larger subsets of workers, i. e. for any S, T ⊆ A( f ), S ≻ f T if |S| > |T|

Lexicographic A firm f has lexicographic preferences if it prefers any subset of work-
ers containing its favourite worker over any subset not containing it, subject to
which, it prefers any subset containing its second-favourite worker over any sub-
set not containing it, and so on. Formally, for any S, T ⊆ A( f ), S ≻ f T if the
most preferred worker (to ≻ f ) in S∆T is in S
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2.3 matching

Given a MM Instance I = ⟨W, F,≻, q⟩, a matching µ : W ⇀ F is a (partial) map such
that:

• each worker w ∈ W is either unmatched, i. e. µ(w) is undefined, or matched to
an acceptable firm, i. e. µ(w) ∈ A(w)

• each firm f is matched with at most q[ f ] workers, i. e. |µ−1( f )| ≤ q[ f ]

Firms which are assigned less workers than their capacity are called under-filled or
under-subscribed. A matching is said to be perfect is every worker is matched under it.

We say an worker w ∈ W weakly prefers a matching µ to a matching σ if either
µ(w) = σ(w) or µ(w) ≻w σ(w). Similarly, a firm f ∈ F weakly prefers a matching µ to
a matching σ if either µ−1(w) = σ−1(w) or µ−1(w) ≻ f σ−1(w). Matching µ is called
a worker-optimal (resp. firm-optimal) stable matching if every worker (resp. every firm)
weakly prefers µ to all other stable matchings.

2.4 stability & gale-shapley algorithm

A matching µ is said to be blocked by a worker-firm pair (w, f ) if:

• µ(w) = ⊥ or f ≻w µ(w)

• ∃S ⊆ µ−1( f ) st. S ∪ {w} ≻ f µ−1( f ) and |S ∪ {w}| ≤ q[ f ]

A matching is said to be stable if it is not blocked by any such worker-firm pairs.
The set of stable matchings for a MM Instance I is noted by SI .

The Gale-Shapley algorithm [GS62], also know as the deferred-acceptance algorithm, is
the well-known method to find a stable matching. As the name suggests, one of the set
is chosen to be proposing and each round an unmatched agent from the set proposes
to their most preferred agent(s) on the other set. Agents from the other set accept their
most preferred proposal(s) yet, and reject the others. Note that there cannot be more
than |E| proposals, thus the algorithm takes linear time in terms of input (E) size.

Depending on whether the workers propose (worker-proposing deferred-
acceptance or WPDA) or the firms propose (firm-proposing deferred-acceptance or
FPDA), the outcome is a worker-optimal or a firm-optimal stable matching respec-
tively.

Proposition 1 (Worker-optimal and Firm-optimal stable matchings [Rot84]). Given any
instance I, there exist (no necessarily distinct) stable matchings µW , µF ∈ SI such that for
every stable matching µ ∈ SI , µW(w) ≻w µ(w) ≻w µF(w) for every worker w ∈ W and
µF( f ) ≻ f µ( f ) ≻ f µW( f ) for every firm f ∈ F.
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2.5 canonical one-to-one instance

Given a many-to-one instance I = ⟨W, F,≻, q⟩ with responsive preferences, there ex-
ists an associated one-to-one instance I′ = ⟨P, Q,≻⟩ obtained by creating q[ f ] men
for each firm f and one woman for each worker w. Each man’s preferences for the
women mirror the corresponding firm’s preferences for the corresponding workers.
Each woman prefers all men corresponding to a more preferred firm over all men cor-
responding to any less preferred firm (in accordance with the corresponding worker’s
preferences). For any fixed firm, all women prefer the man corresponding to its first
copy over the man representing its second copy, and so on. Any stable matching in the
one-to-one instance I′ maps to a unique stable matching in the many-to-one instance
I, obtained by "compressing" the former matching in a natural way.

Proposition 2 (Canonical one-to-one instance [GS85]). Given any many-to-one instance
I = ⟨W, F,≻, q⟩, there exists a one-to-one instance I′ = ⟨P, Q,≻⟩ such that there is a bijec-
tion between the stable matchings of I and I′. Furthermore, the instance I′ can be constructed
in polynomial time.

2.6 rural hospitals theorem

The rural hospitals theorem is a well-know result for many-to-one stable matchings. It
states that, for any fixed firm f , the number of workers matched with f is the same in
every stable matching [Rot84]. Furthermore, if f is under-filled in any stable matching,
then it is matched with the same set of workers in every stable matching [Rot86].

Proposition 3 (Rural Hospitals theorem [Rot84; Rot86]). Given any instance I, any firm f ,
and any pair of stable matchings µ, µ′ ∈ SI , we have that |µ−1( f )| = |µ′−1( f )|. Furthermore,
if |µ−1( f )| < q[ f ] for some stable matching µ ∈ SI , then µ−1( f ) = µ′−1( f ) for every stable
matching µ′ ∈ SI

Thus given a MM instance, all stable matchings match the same set of workers and
firms. We denote the set of all assigned and unassigned workers in a stable matching
by Wa and Wu respectively. We also use the following notations:

∆x = |A(x)| length of the preference list of agent x ∈ W ∪ F

∆u = max
w∈Wu

{∆w}
length of the longest preference list among unassigned
workers

∆W = max
w∈W

{∆w} length of the longest preference list among all workers

∆F = max
f∈F

{∆ f } length of the longest preference list among all firms
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In this chapter, we explore how changing the capacity of a firm can affect the outcome
of the firms and the workers, thus the set of stable matchings. Specifically, we consider
WPDA and FPDA and ask if a firm can improve/worsen when a unit capacity is
added to it. Similarly, we will ask whether all workers can improve or if some workers
can worsen when a firm’s capacity is increased. The results are summarized below:

WPDA FPDA

Can the firm improve? Yes [Example 1] Yes [Example 1]

Can the firm worsen? Yes [Example 2] Yes [Example 2]

Can all workers improve? Yes [Example 1] Yes [Example 1]

Can some worker worsen? No [Corollary 1] No [Corollary 1]

Table 1: Effect of a firm’s capacity increase on itself and the workers

Note that the impact of decreasing capacity of a firm can be readily inferred from
Table 1. If increasing capacity can improve the firm’s outcome, then descreasing its
capacity is equivalent to going back from the new to the old instance, which make it
worse off.

3.1 can firms and workers improve?

Example 1. Consider an instance I with three workers w1, w2, w3 and two firms f1, f2 with
preferences:

w1, w2, w3 : f1 ≻ f2 f1, f2 : w1 ≻ w2 ≻ w3

Both firms have unit capacity, i. e. q[ f1] = q[ f2] = 1, then I has a unique stable matching:

µ1 = {(w1, f1), (w2, f2)}

7
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Now suppose I′ is the instance obtained by adding unit capacity to firm f1, i. e. q′[ f1] = 2,
then I ′ also has a unique stable matching

µ2 = {({w1, w2}, f1), (w3, f2)}

Observe that all workers w1, w2, w3 as well as the firm f1 that increased its capacity
are better off under the new matching µ2, i. e. they prefer µ2 over µ1. Furthermore, as
µ1 and µ2 are the only stable matchings for their corresponding instances, the result
holds under both WPDA and FPDA algorithms. Hence both the firm and all workers
can improve on capacity increase.

3.2 can firms worsen?

Example 2. Consider an instance I with three workers w1, w2, w3 and two firms f1, f2 with
lexicographic preferences:

f1 : {w1, w2, w3} ≻ {w1, w2} ≻ {w1, w3} ≻
w1 : f2 ≻ f1 {w1} ≻ {w2, w3} ≻ {w2} ≻ {w3}

w2, w3 : f1 ≻ f2 f2 : {w1, w2, w3} ≻ {w2, w3} ≻ {w1, w3} ≻
{w3} ≻ {w1, w2} ≻ {w2} ≻ {w1}

Each firm has unit capacity, i. e. q[ f1] = q[ f2] = 1, then there is a unique stable matching for
I:

µ1 = {(w1, f1), (w3, f2)}

Now consider a new instance I′ derived from I by increasing the capacity of firm f1 by 1,
i. e. q′[ f1] = 2, then the stable matchings for I′ are:

µ2 : {({w1, w2}, f1), (w3, f2)}
µ3 : {({w2, w3}, f1), (w1, f2)}

where µ2 and µ3 are respectively the firm-optimal and worker-optimal stable matchings for I ′.
Next consider a new instance I′′ derived from I′ by increasing the capacity of firm f2 by 1,

i. e. q′′[ f2] = 2, then µ3 is the unique stable matching for I ′′.

Observe that firm f1 prefers µ1 (unique and thus worker-optimal stable matching
for I) over µ3 and firm f2 prefers µ2 over µ3 (unique and thus firm-optimal stable
matching for I′′). Thus under both WPDA and FPDA algorithms, a firm (resp. f1 and
f2) can worsen upon increasing its capacity.
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Proposition 4 ([KÜ06]). Let µ and µ′ denote the worker-optimal stable matching before and
after a firm f with strongly monotone preference increases its capacity by 1. Then µ′( f ) ⪰ f

µ( f )

We can show that the number of workers matched with a firm f cannot decrease
upon capacity increase. We can also show that if the number of workers matched with
a firm f does not change, then set of set of workers matched with f also remains
the same. Thus, for a firm’s outcome to change, it must be matched with strictly
more workers in the new matching, and under strong monotonicity it will strictly
prefer the new outcome. Thus under WPDA algorithm, a firm with stronly monotone
preferences cannot worsen upon increasing its capacity.

Example 3. Consider an instance I with two workers w1, w2 and two firms f1, f2 with
strongly monotone preferences:

w1 : f2 ≻ f1 f1 : {w1, w2} ≻ {w1} ≻ {w2}
w2 : f1 ≻ f2 f2 : {w1, w2} ≻ {w2} ≻ {w1}

Each firm has unit capacity, i. e. q[ f1] = q[ f2] = 1, then the firm-optimal stable matching for
I is:

µ1 = {(w1, f1), (w2, f2)}

Now consider a new instance I′ derived from I by increasing the capacity of firm f2 by 1,
i. e. q′[ f2] = 2, then the firm-optimal stable matching for I′ is:

µ2 = {(w2, f1), (w1, f2)}

Observe that f2 prefers µ1 over µ2. Thus under FPDA algorithm, thus a firm with
strongly monotone preference (namely f2) can worsen on increasing its capacity.

3.3 can workers worsen?

Proposition 5 ([GS85; RS90]). Given any one-to-one instance I = ⟨P, Q,≻⟩, let I′ =

⟨P ∪ {p}, Q,≻′⟩ be another one-to-one instance derived from I by adding the man p such
that the new preferences ≻′ agree with the old preferences ≻ over P and Q. Let µP and µQ

be the men-optimal and women-optimal stable matchings (respectively) for I and let µ′
P and

µ′
Q denote the same for I ′. Then, for every woman q ∈ Q, we have µ′

P(q) ⪰′
q µP(q) and

µ′
Q(q) ⪰′

q µQ(q).

Increasing the capacity of a firm is equivalent to "adding a man" in the correspond-
ing canonical one-to-one instance (Section 2.5). Due to the increased "competition"
among the men, the outcomes of all women (correspondingly the outcome of all
worker) weakly improves (Proposition 5). Thus under both WPDA and FPDA algo-
rithms, the outcome of any worker can never worsen.
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Corollary 1. Let µW and µ′
W denote the worker-optimal stable matching before and after a

firm increases its capacity by 1, and let µF and µ′
F be the corresponding firm-optimal stable

matching. Then, for all workers w ∈ W, µ′
W(w) ⪰′

w µW(w) and µ′
F(w) ⪰′

w µF(w).
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O P T I M A L C A PA C I T Y M O D I F I C AT I O N

In this chapter, we explore how to optimally increase the capacities of the firms so
that we can obstain a stable and perfect matching. We focus on two decision problems,
namely MinSum Cap Stable and Perfect and MinMax Cap Stable and Perfect

abbreviated as MinSumSP and MinMaxSP respectively.

4.1 minsum capacities

Input : A MM Instance I = ⟨W, F,≻, q⟩, a capacity bound k+ ∈ N

Question (MinSumSP) : Is there a capacity increase vector r with |r|1 ≤ k+ st. I ′ =

⟨W, F,≻, q + r⟩ admits a stable and perfect matching?

We call a capacity increase vector r feasible if it results in a solution and optimal is
|r|1 is minimum among all feasible vectors. We also denote the minimum |r|1, i. e. the
optimal capacity increase value by OPT.

4.1.1 Structural Properties

Lemma 1. Let I1 = ⟨W, F,≻, q1⟩ and I2 = ⟨W, F,≻, q2⟩ denote two MM-instances with the
same set of workers and firms, and the same preferences and priority lists such that q1 ≤ q2.
Then the following hold.

i. Every worker weakly prefers the worker-optimal stable matching µ2 in I2 to the worker-
optimal stable matching µ1 in I1.

ii. If a firm f is under-filled in µ1, then µ−1
2 ( f ) ⊆ µ−1

1 ( f )

Proof. For (i), note that the weakly preferring relation is transitive. So it suffices to
consider the case where only unit capacity is added to exactly one firm, the outcome
of which we have already seen in Corollary 1 (also shown by Kominers [Kom20]).

For (ii), for the sake of contradiction, suppose there exists a worker w ∈ µ−1
2 \µ−1

1 ( f ),
then by (i), µ2(w) ≻w µ1(w). But f is under-filled in µ1, and thus it forms a blocking
pair with w in µ1, a contradiction.

11
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Algorithm 1 Create I∗(v) and µ∗
v

Input: v ∈ V , a MM Instance I and the sets Wa, Wu Output: I∗(v), µ∗
v

Set E = E′ := (w, f )|w ∈ A( f ) ∧ f ∈ A(w)
for each firm f ∈ F do

n( f , v) := number of workers v assigns to f
q′[ f ] := max{q[ f ]− n( f , v), 0}

end for
for (w, f ) ∈ E′ with w ∈ Wa do

if there is a w′ ∈ Wu st. f ≻w′ v[w′] ∧ w′ ≻ f w then
Delete (w, f ) from E′

else if there is a w′ ∈ Wu st. v[w′] ≻w f ∧ w ≻v[w′] w′ then
Delete (w, f ) from E′

end if
end for
if there is a w ∈ Wu with no remaining incident edges in E′ then

Return "No I∗(v) instance"
end if
for x ∈ Wa ∪ F do

Set ≻′
x to be the restriction of ≻x to their remaining partners in Wa ∪ F

end for
Set I(v) := ⟨Wa, F,≻′, q′⟩
µ̂v := worker-optimal stable matching of I(v)
for w ∈ Wa do

wo(w, v) := the worst remaining firm of w in I(v)
end for
U(v) := unmatched workers in µ̂v
nu( f , v) := |{w ∈ U(v) | wo(w, v) = f |
for for w ∈ W do

if w ∈ Wu then
µ∗

v(w) := v[w]
else if w ∈ U(v) then

µ∗
v(w) := wo(w, v)

else
µ∗

v(w) := µ̂v(w)
end if

end for
for f ∈ F do

q∗[ f ] := max{n( f , v) + |µ̂v( f )|+ nu( f , v), q[ f ]}
end for
Return I∗(v) := ⟨W, F,≻, q∗⟩ , µ∗

v
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Given a MM Instance I, let µ̂ be the worker-optimal stable matching. Consider all
possible vectors v, whose coordinates are the unassigned workers and for each coordi-
nate w ∈ Wu, the entry is an acceptable firm for the unassigned worker (v[w] ∈ A(w)).
Denote the set of such vectors by V . Now, if we create I∗(v) and µ∗

v using Algorithm 1,
we have the following lemma:

Lemma 2 ([CC24]). Let V ′ ⊆ V be the set of those vectors v, such that I∗(v) exists and µ∗
v is

stable in I∗(v). Then, the sum of values of an optimal capacity increase vector for MinSumSP

OPT = min
v∈V ′

{
∑
f∈F

(n( f , v) + |µ̂v( f )|+ nu( f , v)− q[ f ])+
}

4.1.2 Hardness Results

Given any capacity increase vector r, whether I′ = ⟨W, F,≻, q + r⟩ admits a stable
and perfect matching can be checked in linear time using the Gale-Shapley algorithm.
Hence, MinSumSP is contained in NP.

Theorem 1. MinSumSP is NP-complete; hardness remains even if q = 1m, ∆W ≤ 4, ∆u = 2
and ∆F = 3. If ∆u ≤ 1 or ∆F ≤ 2 then MinSumSP becomes polynomial-time solvable.

Proof. For the polynomial results, consider ∆u ≤ 1, then there is just one possible
assignment vector for the unassigned workers, and by Lemma 2 the problem can be
solved in polynomial time.

Next, assume that ∆F ≤ 2. Since every firm has atleast one seat, it must be assigned
atleast one worker in every initial stable matching as otherwise by Lemma 1 (ii) we
can ignore such firms. Thus if an unassigned worker is assigned to a firm, it already
has an initially assigned worker, and no other assigned or unassigned worker would
have a justified envy. Hence, each assignment vector corresponds to a good capacity
increase vector and we only need to check whether k+ ≥ |Wun|.

Now for the hardness result we have a reduction from the NP-complete Vertex

Cover problem [CC24]

Theorem 2. MinSumSP does not have any constant-factor approximation algorithm unless
P=NP. This holds even if the preference and priority lists are derived from a master list

Proof. We have a reduction from the NP-hard Set Cover problem [CC24]

Theorem 3. MinSumSP is W[1]-hard wrt. the capacity bound k+

Proof. We have a parameterized reduction from the Multi-Colored Clique problem,
which is W[1]-hard wrt. the solution size h [CC24]



4.1 minsum capacities 14

min ∑
f∈F

r f subject to

|W| · ∑
f ′| f ′⪰w f

x(w, f ′) + ∑
w′|w′≻ f w

x(w′, f ) ≥ q[ f ] + r f ∀(w, f ) ∈ E

∑
f∈A(w)

x(w, f ) = 1 ∀w ∈ W

∑
w∈A( f )

x(w, f ) ≤ q[ f ] + r f ∀ f ∈ F

x(w, f ) ∈ {0, 1} ∀(w, f ) ∈ E

r f ∈ N ∀ f ∈ F

Table 2: IP formulation for MinSumSP

4.1.3 Algorithmic Results

First, Table 2 gives us an an Integer Programming formulation for MinSumSP.

Lemma 3 ([CC24]). The optimal solution to the Integer Program in Table 2 gives an optimal
solution for MinSumSP

Next, based on Lemma 2, we have a simple greedy approximation algorithm.

Algorithm 2 |Wu|-approximation

Input: MM Instance I
µ := ϕ
L := Wu = set of unmatched workers in the worker-optimal stable matching
Delete the workers w ∈ Wu from I
while L ̸= ϕ do

Choose the next (at most) c workers in L, add them to I and define V as in
Lemma 2
for all v ∈ V do

Compute I∗(v) and µ∗
v using Algorithm 1 if it exists

end for
Let v ∈ V ′ be the vector where the smallest aggregate capacity increase is needed

Update the capacities according to I∗(v)
Set I := I∗(v) and µ := µ∗

v
end while
Return µ

Theorem 4. MinSumSP admits an |Wu|-approx. algorithm. Futhermore, it admits a polyno-
mial time ⌈|Wu/c|⌉-approx. algorithm for any constant c.

Proof. Fix a constant c, then in each iteration of the while loop, we choose at most c
unassigned workers. Thus |V| ≤ ∆c

u and the running time is ∆c
u · O(|E|). Now there

are at most ⌈|Wu|/c⌉ iterations of the while loop, and in each iteration the additional
number of seats required is at most OPT. Hence, the total capacity increase of the
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algorithm is at most OPT · ⌈|Wu|/c⌉ and we have a polynomial time ⌈|Wu|/c⌉-approx.
algorithm.

Checking all possible assignment vectors gives up the following result:

Theorem 5. MinSumSP can be solved in ∆|Wu|
u · (n + m)O(1) time and hence is FPT wrt.

(|Wu|, ∆u).

Proof. From Lemma 2, we know that to find the optimal capacity increase vector, it
is enough to iterate over V , compute µ∗

v if it exists and choose the best among the
matchings that are stable. For each v ∈ V , nu(v) can be computed in O(|E|) time and
|V| ≤ ∆|Wu|

u . Hence, we can iterate through all v ∈ V and find the optimal solution in
time O(∆|Wu|

u · |E|).

4.2 minmax capacities

Input : A MM Instance I = ⟨W, F,≻, q⟩, a capacity bound kmax ∈ N

Question (MinMaxSP) : Is there a capacity increase vector r with |r|∞ ≤ kmax st. I ′ =
⟨W, F,≻, q + r⟩ admits a stable and perfect matching?

Algorithm 3 Algorithm for MinMaxSP

Input: MM Instance I
r[ f ] := 0 for all f ∈ F
µ := worker-optimal stable matching
while µ does not match all workers do

r[ f ] = r[ f ] + 1
µ := worker-optimal stable matching with capacities q + r

end while
Return µ

Theorem 6. MinMaxSP can be solved, and the corresponding student-optimal stable and
perfect matching can be found, in polynomial time.

Proof. From Lemma 1 we know that increasing a firm’s capacity weakly improves
every worker’s situation. Assume r is the optimal capacity increase vector, with |r|∞ =

kmax, then if we have r[ f ] = kmax for all f ∈ F, then the worker-optimal stable matching
should match all workers and is best for the workers for any capacity increase vector
with |r|∞ ≤ kmax. Hence, the algorithm finds the optimal kmax, and a corresponding
worker-optimal stable matching.



5
O U R C O N T R I B U T I O N

In this chapter, we investigate some questions that emerged while reviewing the last
two chapters. We will see how the existing ways can be extended to tackle more
realistic challenges, which take more parameters and constraints into account.

5.1 question 1

What if there is a bound on the capacity increase scale, say κ% of the initial value? Formally:

Input : A MM Instance I = ⟨W, F,≻, q⟩, a capacity increase scale bound κ ∈ R

Question : Is there a capacity increase scale α with α ≤ κ st. I′ = ⟨W, F,≻, q + ⌊αq⌋⟩
admits a stable and perfect matching?

Algorithm 4 Binary search on [0, κ]

Input: MM Instance I, capacity increase scale bound κ, error bound ϵ
Set low := 0, high := κ, α := 0
while high − low > ϵ do

α := low+high
2

I′ := ⟨W, F,≻, q + ⌊αq⌋⟩
if I′ admits a stable and perfect matching then

low = α
else

high = α
end if

end while
Return α

The simplest approach is to divide [0, κ] into (say) n partitions, and perform a linear
search by picking a point in each partition. We can get more accurate values of α

by increasing the number of partitions, since the difference between each point gets
smaller. A better approach is to use a binary search on [0, κ] with an error bound
ϵ > 0 (Algorithm 4) or a certain number of rounds n. Since checking whether I′

admits a stable and perfect matching can be done in linear time using the Gale-Shapley
algorithm, all of the above approaches run in polynomial time.

16
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5.2 question 2

What is each firm has different cost associated to its unit capacity increase? Formally:

5.2.1 MinSum Cost-Based Capacities

Input : A MM Instance I = ⟨W, F,≻, q⟩, a cost vector c ∈ Nm, a capacity bound k+ ∈ N

Question (MinSumCSP) : Is there a capacity increase vector r with |c ⊙ r|1 ≤ k+ st. I ′ =
⟨W, F,≻, q + r⟩ admits a stable and perfect matching?

If we set c = 1m, then the problem reduces to MinSumSP, which we know is NP-
complete (Theorem 1). Thus MinSumCSP is NP-complete. So we try to extend the
algorithmic results from MinSumSP to account for costs.

The Integer Program can be simply extended by changing the optimize function to
min ∑

f∈F
c[ f ] · r f while the other constraints remain the same.

|W| · ∑
f ′| f ′⪰w f

x(w, f ′) + ∑
w′|w′≻ f w

x(w′, f ) ≥ q[ f ] + r f ∀(w, f ) ∈ E

The first constraint of the IP Table 2 (above) is to ensure that:

• either the worker w is assigned to some more preferred firm f ′, i. e.

∑
f ′| f ′⪰w f

x(w, f ′) = 1

• or the firm f is already full with workers more preferred than w, i. e.

∑
w′|w′≻ f w

x(w′, f ) ≥ q[ f ] + r f

|W| is chosen to scale the first term greater than q[ f ] + r f and can be con-
viniently replace by either smaller parameters ∆F or ∆ f .

Algorithm 1 can be used without any change, by accounting for the cost in Lemma 2
as follows:

OPT = min
v∈V ′

{
∑
f∈F

c[ f ] · (n( f , v) + |µ̂v( f )|+ nu( f , v)− q[ f ])+
}

This also implies that the approximation and FPT results naturally follow, since they
directly use Lemma 2.
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5.2.2 MinMax Cost-Based Capacities

Input : A MM Instance I = ⟨W, F,≻, q⟩, a cost vector c ∈ Nm, a capacity bound kmax ∈ N

Question (MinMaxCSP) : Is there a capacity increase vector r with |c ⊙ r|∞ ≤ kmax st.
I′ = ⟨W, F,≻, q + r⟩ admits a stable and perfect matching?

Algorithm 5 Algorithm for MinMaxCSP

Input: MM Instance I
r[ f ] := 0 for all f ∈ F
C := 0
µ := worker-optimal stable matching
while µ does not match all workers do

C := C + 1
r[ f ] = ⌊C/c[ f ]⌋
µ := worker-optimal stable matching with capacities q + r

end while
Return µ

Extending Algorithm 3 for MinMaxCSP is quite easy. In each itertion of the while
loop, instead of increasing each firm’s capacity, we increase the total cost by 1 and
set the firms’ capacities accordingly. Checking whether I′ admits a stable and perfect
matching can be done in linear time, and thus Algorithm 5 solves for MinMaxCSP in
polynomial time. Note that if gcd(c) = gcd{c[ f1], c[ f2], ..., c[ fm]} ̸= 1, then Algorithm 5
can complete faster by updating C := C + gcd(c) in each iteration.

5.3 question 3

What if we want to match some k-subset of unmatched workers? Formally:

Input : A MM Instance I = ⟨W, F,≻, q⟩, a k-subset W ′ ⊆ Wu of unmatched workers, a
capacity bound k+ ∈ N

Question : Is there a capacity increase vector r with |r|1 ≤ k+ st. I ′ = ⟨W, F,≻, q + r⟩
admits a stable and perfect matching which matches every worker in W ′?

The above problem is similary NP-complete, as choosing W ′ = Wun makes it equiv-
alent to MinSumSP. We can modify Algorithm 2 by setting L := W ′ to solve for above
problem, giving us a ⌈|W ′|/c⌉-approximation algorithm for any constant c. Similary,
it is also FPT wrt. (|W ′|, ∆u).
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